Google Ads Full Service: +49 30 920 38 34 466
Google Ads Agentur und Microsoft Advertisement Elite Partner

Triple-A Approach + 3 Praxistipps

Um bestmögliche Kontrolle und Erfolg bei Google Adwords, neuerdings bekannt als Google Ads, zu haben, legen Marketer feingliedrige Kampagnen an, die sich an Suchbegriffen, Produkten, dem Standort oder den Endgeräten der User orientieren. Darüber hinaus können nun noch ergiebigere Ergebnisse mit dem neuen KI-gesteuerten Google-Algorithmus erzielt werden, der datenbasierte Entscheidungen liefert und noch bessere Kampagnenresultate bei gleichem Budgeteinsatz bringt. Getoppt werden können die Ergebnisse noch mit dem Triple-A Approach, der von der größten reinen Google Ads Full Funnel Agentur Smarketer entwickelt wurde und in den Algorithmus eingeflossen ist. Berlin, 29. August 2018. Hochqualitativ ausgestaltete AdWords-Kampagnen zeichnen sich dadurch aus, dass sie eine granulare und damit stark segmentierte Struktur haben: Einzelne Kampagnen werden je nach Produkt- oder Marken-Keywords, Geschlecht und Standort der User sowie für die verschiedenen Endgeräte manuell gestaltet. Mit Expertise und Erfahrung hat Smarketer, eine der führenden Google Ads  Agenturen in der DACH-Region, diesen Ansatz jetzt mit dem Triple-A-Approach (Audience, Automation und Attribution) weiterentwickelt. Dabei wird die Kampagnenstruktur so aufgebaut, dass er den neuen Google-Algorithmus optimal bedient und damit durch Machine Learning neue Höchstleistungen erzielt. „Die Vorteile des Google-Algorithmus sind so groß, dass sie einer manuellen Aussteuerung weit überlegen ist. Was bisher bei der Gebotsoptimierung von Hand ausgesteuert wurde, übernimmt beim Smart Bidding nun der Algorithmus,“ erklärt Johannes Humpert, Chief Operating Officer (COO) von Smarketer. Wie er funktioniert, erklärt die AdWords-Agentur hier:

Audience: weg von den Suchbegriffen – hin zu den Zielgruppen

Statt auf Suchbegriffe und Keywords setzt der neue Ansatz vor allem auf die User selbst, die nach Shops oder Produkten suchen. „Der Fokus verlagert sich von den Keywords hin zu den Zielgruppen“, erklärt Humpert. Dank Machine Learning kann der Algorithmus bis zu 70 Millionen Signale innerhalb von 100 Millisekunden analysieren und in kürzester Zeit alle möglichen Datenkombinationen auswerten. Durch diese permanente Verarbeitung und neues Priorisieren von Zielgruppeninformationen wird analysiert, welche Nutzer am wahrscheinlichsten in Zukunft einen Kauf tätigen werden. Diese Informationen aktualisiert Google täglich durch Hinzufügen oder Entfernen von Usern in den Zielgruppen. Informationen, die Nutzer in einen Kontext einbinden, sind für Werbetreibende enorm wichtig: „Marketer müssen ihre Zielgruppe richtig segmentieren und darauf achten, dass sie diese auch ansprechen. Bei der bisherigen granularen Struktur erfolgte diese Segmentierung manuell, indem Händler selbst die Zielgruppen in Remarketinglisten festlegen. Beim Machine Learning übernimmt diesen Prozess nun der Algorithmus.“, so Humpert.

Automation: die granulare Struktur aufbrechen – und den Algorithmus arbeiten lassen

Automation bedeutet in erster Linie Gebotsoptimierung, das so genannte Smart Bidding, für das Händler auch Optimierungstools von Google einsetzen können. Der Vorteil des neuen Google-Algorithmus: Händler verbessern ihre Performance enorm, weil Google bei der Schaltung einer Anzeige verschiedene Signale in Echtzeit verarbeitet. Dazu gehören unter anderem Suchanfragen, Browser, Alter, Geschlecht, Interessen, Endgeräte, Standort und Datum – also Informationen, die bei einer manuellen Steuerung nicht mit einfließen. „Bisher mussten Händler ihre Gebote manuell festlegen“, so Humpert. „Heute ist es möglich, dass der Google-Algorithmus die Gebote aussteuert – ohne subjektive Meinungen, sondern ausschließlich datenbasiert. Das Machine Learning erzielt sehr viel bessere Ergebnisse als die bisherige granulare Struktur.“

Attribution: nicht nur der letzte Klick zählt – sondern auch der Weg dorthin

Bisher legten Händler bei der Bewertung der Conversion den Fokus zumeist auf den letzten Klick – also denjenigen, der zum Verkauf führt. Das Attributionsmodell sollte aber von „Last Klick“ auf „Datengetrieben“ oder „Positionsbasiert“ umgestellt werden. Führte die Customer Journey beispielsweise von Facebook über Google und von dort zur Landing Page des Händlers, kam dem alten Modell zufolge der Verkauf ausschließlich über Google zustande. Stellen Händler ihr Attributionsmodell auf „Datengetrieben“ um, wird der Wert der Conversion auf die jeweilige Aktion verteilt. „Die neue Herangehensweise lässt sich eher mit einem Fußballspiel vergleichen“, erklärt Humpert. „Zwar macht der Stürmer das Tor, aber ohne den Mittelfeldspieler und die Abwehr würde er nicht zum Angriff kommen.“ Und genau diesen Prozess bildet das datengetriebene Attributionsmodell von Google ab. Dieses errechnet mit künstlicher Intelligenz für jeden Kunden das optimale Modell, was die verschiedenen Kampagnen und Suchbegriffe zuordnet. Es zeigt, wie der Kauf zustande kam, denn Nutzer benötigen in der Regel mehrere Anläufe, bevor sie eine Conversion tätigen. Stehen für das datengetriebene Attributionsmodell nicht genügend Daten zur Verfügung, kann das positionsbasierte Modell genutzt werden: Dieses rechnet jeweils 40 Prozent der zuerst und zuletzt angeklickten Anzeige, die restlichen 20 Prozent den übrigen Klicks zu.

Der KI-gesteuerte Google-Algorithmus

Der Algorithmus macht die Zusammenführung und Verkleinerung von Kampagnen notwendig, weil eine Übersegmentierung das Machine Learning blockiert. Möglich wird die Zusammenführung, weil die Kampagnen per künstlicher Intelligenz ausgesteuert werden. Ihre Zusammenführung erfolgt jedoch nach wie vor manuell. Diese Best Practice von Smarketer, einem mehrfach ausgezeichneten Kooperationspartner von Google, wurde in das Agency of the Future (AOTF) Programm von Google aufgenommen. „Wir haben verstanden, wie man Kampagnen bauen muss, um den Algorithmus effizient zu bedienen und Smart Bidding richtig einzusetzen“, so der COO von Smarketer. Dabei ist es wichtig, die Grenzen des Algorithmus zu kennen, um im Bedarfsfall wieder manuell aussteuern zu können. Der Algorithmus ist der Einsatz von intelligenten Gebotsstrategien. Smarketer hat als eine der ersten Agenturen in Europa das AOTF-Programm in ihr Angebot aufgenommen. Der Triple-A Approach als Teil der AOTF zielt darauf ab, die optimale Struktur für intelligente Gebotsstrategien zu entwerfen: Mit dem Fokus auf Audience, Automation und Attribution erzielen Händler effektivere Ergebnisse mit AdWords. Diesen Ansatz stellte Smarketer auch exklusiv bei der Konferenz „Google Marketing Live 2018“ in San José, Kalifornien, vor –  als eine von drei Agenturen weltweit, die für eine Präsentation auf dem führenden Marketing-Event von Google ausgewählt wurden.

Über Smarketer

Smarketer ist die größte reine Google Ads Agentur in der DACH-Region, die seit über 7 Jahren als Wachstumstreiber für den Mittelstand erfolgreich agiert. Mit über 500 Kunden aus den unterschiedlichsten Branchen und 80 hochspezialisierten, internen Experten hat sich Smarkerter zu einer bedeutenden (Performance) Agentur etabliert. Das inhabergeführte Unternehmen bietet umfassende, mehrsprachige AdWords-Beratung in den folgenden Bereichen: Google Suche, Google Shopping, Google Display Netzwerk, Mobil, Remarketing, YouTube sowie Bing. Auch SEM-Schulungen und das Personalleasing „Rent a Smarketer“ gehören zum Firmenportfolio. Der Erfolg und die Kompetenz von Smarketer wurden mit dem Gewinn des Wettbewerbs „Google Grand Slam 2014“ eindeutig bestätigt, bei welchem Smarketer den höchsten Neukundenumsatz mit Google AdWords erzielte und sich gegen 2.000 Online-Marketing-Agenturen in der DACH-Region durchsetzen konnte. 2016 folgte dann im Wettbewerb gegen 2.000 Agenturen der 2. Platz beim „Google Partner Grand Prix“. Im letzten Jahr wurde dem Ganzen die Krone aufgesetzt: In der Kategorie Digital Warriors ist es Smarketer gelungen sich gegen mehr als 1.000 Agenturen in der D-A-CH Region zu behaupten. Smarketer wurde 2011 von dem Geschäftsführer und Inhaber David Gabriel in Berlin gegründet. 

Smarketer |

Kommentar schreiben

Deine E-Mail-Adresse wird nicht veröffentlicht.

Mehr zum Thema
Google Ads
Local Inventory Ads – So richten Sie sie ein!
Local Inventory Ads – So richten Sie sie ein!

Local Inventory Ads von Google bieten Einzelhändlern die Möglichkeit, online sichtbar zu werden und Kunden anschließend auf dem „offline“ Weg in ihre Ladengeschäfte zu locken.Wenn ein potenzieller Kunde auf eine lokale Anzeige klickt, wird er auf eine sogenannte Local Storefront …

Zu: Local Inventory Ads – So richten Sie sie ein!
Testen, aber richtig! So funktionieren A/B-Tests im Google Ads Konto
Testen, aber richtig! So funktionieren A/B-Tests im Google Ads Konto

Ein A/B-Test ist für Werbetreibende eine gute Methode, um wichtige Erkenntnisse über ihre Zielgruppe zu sammeln und auf diese Weise die Performance Ihrer Anzeigen langfristig zu steigern. Indem ein Creative, eine Landingpage oder eine Anzeige gegen eine alternative Version getestet wird, …

Zu: Testen, aber richtig! So funktionieren A/B-Tests im Google Ads Konto
Google Analytics Filter

Nicht jeder Traffic, der in Analytics angezeigt wird, wird durch echte Besucher verursacht oder ist gar nicht einmal echter Traffic auf der eigenen Seite.1. Fake- oder Ghost-Traffic:Fake- oder Ghost-Traffic kommt dadurch zustande, dass das Measurement Protocol, was eigentlich für Entwickler …

Zu: Google Analytics Filter
Die 12 häufigsten Google Ads Fehler und wie Sie diese vermeiden
Die 12 häufigsten Google Ads Fehler und wie Sie diese vermeiden

Ob Sie gerade erst mit Google Ads beginnen oder schon seit Jahren Kampagnen schalten: Was wäre, wenn Sie jeden Tag Geld verbrennen – ohne es zu merken? Google Ads ist ein extrem wertvollen Instrument im Online-Marketing. Es bietet Unternehmen die …

Zu: Die 12 häufigsten Google Ads Fehler und wie Sie diese vermeiden
Nutzen der Empfehlungen im neuen Google Ads Interface

Das neue Google Ads Interface ist seit Ende 2017 für Werbetreibende zugänglich. Nichtsdestotrotz bietet Google bis heute, insbesondere in älteren Google Ads Projekten, noch die Nutzung des alten Google AdWords Interface, wenn auch unter funktionalen Einschränkungen, an. Innerhalb dieses Beitrags …

Zu: Nutzen der Empfehlungen im neuen Google Ads Interface
Ziel CPA in Google Ads: Definition, Berechnung & strategische Anwendung
Ziel CPA in Google Ads: Definition, Berechnung & strategische Anwendung

Wer mit Google Ads arbeitet, kennt das Problem: Wie erreiche ich mehr Kunden, ohne dabei die Kosten für die Ads pro Conversion aus dem Ruder laufen zu lassen? Eine smarte Lösung bietet die automatisierte Gebotsstrategie Ziel-CPA (Cost per Acquisition oder …

Zu: Ziel CPA in Google Ads: Definition, Berechnung & strategische Anwendung

Ihr Kontakt zu uns

Jetzt kostenlos und unverbindlich anfragen: